今天冷知识百科网小编 陈健国 给各位分享向量行列式的计算方法的知识,其中也会对三阶向量的行列式求法?(三阶行列式特征向量计算方式)相关问题进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!
三阶向量的行列式求法?
三阶行列式可用对角线法则:D = a11a22a33 + a12a23a31 + a13a21a32- a13a22a31 - a12a21a33 - a11a23a32。矩阵A乘矩阵B,得矩阵C,方法是A的第一行元素分别对应乘以B的第一列元素各元素,相加得C11,A的第一行元素对应乘以B的第二行各元素,相加得C12,C的第二行元素为A的第二行元素按上面方法与B相乘所得结果,N阶矩阵都是这样乘,A的列数要与B的行数相等。
向量叉乘怎么用行列式计算?
向量叉乘的计算方法:
1、反交换律:a乘b,等于b乘a;
2、加法的分配律:a乘括号b加c,等于a乘b加a乘c;
3、与标量乘法兼容:ra乘b,等于a乘rb,等于r乘括号a加b;
4、不满足结合律,但满足雅可比恒等式:a乘括号b加c,加b乘括号a加c,加c乘括号b加a,等于0;
5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的 R3 构成了一个代数;
6、两个非零向量a和b平行,当且仅当a乘b等于0。
列秩和行秩怎么算?
这个定义涉及到向量的极大线性无关组。设a1,a2……as为一个n维向量组,如果向量组中有r个向量线性无关,而任何r+1个向量都线性相关,那么这r个线性无关的向量称为向量组的一个极大线性无关组。 向量组的极大线性无关组中所含向量的个数,称为向量的秩。 矩阵的行向量的秩称为行秩。列向量的秩成为列秩。
向量积的计算方法?
数量积AB=ac+bd 向量积要利用行列式 若向量a=(a1,b1,c1),向量b=(a2,b2,c2), 则 向量a·向量b=a1a2+b1b2+c1c2 向量a×向量b= | i j k| |a1 b1 c1| |a2 b2 c2| =(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1) (i、j、k分别为空间中相互垂直的三条坐标轴的单位向量 这是三维才有的
i j k方向向量怎么求?
向量的ijk行列式是a=2i+j-k,ijk分别代表x轴正方向、y轴正方向、z轴正方向的单位向量,因为叉积的计算方**好是三阶行列式的计算方法。单位向量是指模等于1的向量。 由于是非零向量,单位向量具有确定的方向。单位向量有无数个。一个非零向量除以它的模,可得所需单位向量。 向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。 它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)
行列式的元素怎么求?
行列式的元素:两个向量成比例或某个向量为0,则其n个向量不足以支撑起整个空间,空间塌缩为了0。如三阶行列式,第三个向量与其余两个向量张成的面共面了,则塌缩为了二维空间,体积为0.
a向量叉乘与b向量的公式行列式?
a向量叉乘b向量的公式=(x1*x2,y1*y2)。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
行列式的秩怎么求?有几种方法?
一、行列式的秩怎么求
行列式是一个数值,没有秩
只有矩阵才有秩。
矩阵的秩求法:
1、使用初等行变换,或列变换,化成阶梯形,数一下非零行的行数(或非零列的列数),即为秩
2、使用矩阵秩的定义,找到一个k阶子式不为0,k+1阶子式为0,则秩等于k
二、如何求矩阵的秩
引理设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。
定理矩阵的行秩,列秩,秩都相等。
定理初等变换不改变矩阵的秩。
定理矩阵的乘积的秩Rab<=min{Ra,Rb};
当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。
当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
矩阵的秩是反映矩阵固有特性的一个重要概念。
设A是一组向量,定义A的最大无关组中向量的个数为A的秩。
定义1. 在m*n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。
例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式就是矩阵A的一个2阶子式。
定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A
的秩,记作rA,或rankA或R(A)。
特别规定零矩阵的秩为零。
显然rA≤min(m,n) 易得:
若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。
由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)¹ 0;不满秩矩阵就是奇异矩阵,det(A)=0。
由行列式的性质1(1.5[4])知,矩阵A的转置AT的秩与A的秩是一样的。
例1. 计算下面矩阵的秩,
而A的所有的三阶子式,或有一行为零;或有两行成比例,因而所
有的三阶子式全为零,所以rA=2。