今天冷知识百科网小编 秦采澜 给各位分享用户供电常见故障有哪些的知识,其中也会对一户停电属于常见居民故障停电的原因吗?(一户停电属于常见居民故障停电的原因吗对吗)相关问题进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!

一户停电属于常见居民故障停电的原因吗?

属于。居民用户常见的故障停电原因包括:一户停电、表后线路断线、短路、漏电开关故障等。

电力系统的故障类型

一户停电属于常见居民故障停电的原因吗?

电力系统故障总的来说可以分为两大类:横向故障和纵向故障。横向故障是指各种类型的短路,包括三相短路、两相短路、单相接地短路及两相接地短路。

电力系统继电保护故障对称分量变换对称分量变换对称分量变换对称分量变换 三相电路中,任意一组不对称的三相相量都可以分解为三组三相对称的分量,这就是所谓的“三相相量对称分量法”。对称分量法是将不对称的三相电流和电压各自分解为三组对称分量,它们是:

(1) 正序分量:三相正序分量的大小相等,相位彼此相差2pi/3,相序与系统正常运行方式下的相同;

(2) 负序分量:三相负序分量的大小相等,相位彼此相差2pi/3,相序与正序相反;

(3) 零序分量:三相零序分量的大小相等,相位相同。 为了清楚起见,除了仍按习惯用下标a、b和c表示三个相分量外。

电力系统的故障都有哪些?

常见的有短路故障和短线故障。短路故障分为对称对路和不对称短路。三相短路是对称短路,如果线路参数可以看做近似对称的话可以化简到单相进行短路计算和校验。简单不对称短路有单相短路,两相短路,两线短路接地(两项接地短路),这几种短路要用对称分量法(一般是结合复合序网和正序等效定则)等效成对称短路进行分析计算。对于断线故障,分为单相断线和两相断线,分析方法和短路故障类似(故障的边界条件类似)。

何谓电力系统的故障和不正常状态

电力系统的故障:横向故障和纵向故障。

横向故障是指各种类型的短路,包括三相短路、两相短路、单相接地短路及两相接地短路。三相短路时,由于被短路的三相阻抗相等,因此,三相电流和电压仍是对称的,又称为对称短路。其余几种种类型的短路,因系统的三相对称结构遭到破坏,网络中的三相电压、电流不再对称,故称为不对称短路。

所谓不正常运行(异常)状态是指系统的正常工作受到干扰,使运行参数偏离正常值。如过负荷、电压异常、系统振动等。发生不正常运行(异常)状态或故障若不及时处理或处理不当时,就可能引起事故。而事故就是指人员伤亡、设备损坏、对用户停电或少送电、电能质量降低到不能容许的程度。

电力系统状态:

电力系统正常及异常运行有五种状态 : 正常运行状态、警戒状态、紧急状态、系统 崩溃、恢复状态。

1、正常运行状态。在正常运行状态下 , 电力系统中总的有功和元功出力能与负荷总的 有功和无功的需求达到平衡 ; 电力系统的频率和各母线电压在正常运行的允许范围内 ; 各电 惊设备和输变电设备又均在额定范围内运行 , 系统内的发电和输变电设备均有足够的备用容量。

2、警戒状态。电力系统受到灾难性扰动的机会不太多 , 大量的情况是在正常状态下由于一系列不大的扰动的积累 , 使电力系统总的安全水平逐渐降低 , 以致进入警戒状态。 在警戒状态下 , 虽然电压、频率等都在容许范围内。

3、紧急状态。若系统处于警戒状态时 , 调度人员没有及时采取有效的预防性措施 , 一旦发生一个足够严重的扰动 ( 例如发生短路故障或一台大容量机组退出运行等 ), 那么 , 系统就要从警戒状态进入紧急状态。

4、系统崩溃。在紧急状态下 , 如果不及时采取适当的控制措施 , 或者措施不够有效 ,或者因为扰动及其产生的连锁反应十分严重 , 则系统可能因失去稳定而解列成几个系统。

5、恢复状态。系统崩溃后 , 整个电力系统可能已解列为几个小系统 , 并且造成许多用户大面积的停电和许多发电机的紧急停机。此时 , 要采取各种恢复出力和送电能力的措施 ,逐步对用户恢复供电。

什么是电力系统的故障和不正常状态?

一、电力系统的故障

总的来说可以分为两大类:横向故障和纵向故障。
横向故障是指各种类型的短路,包括三相短路、两相短路、单相接地短路及两相接地短路。
三相短路时,由于被短路的三相阻抗相等,因此,三相电流和电压仍是对称的,又称为对称短路。
其余几种种类型的短路,因系统的三相对称结构遭到破坏,网络中的三相电压、电流不再对称,故称为不对称短路。
运行经验表明,电力系统各种短路故障中,单相短路占大多数,约为总短路故障数的65%,三相短路只占5~10%。三相短路故障发生的几率虽然最小,但故障产生的后果最为严重,必须引起足够的重视。此外,三相对称短路计算又是一切不对称短路计算的基础。
纵向故障主要是指各种类型的断线故障,包括单相断线、两相断线和三相断线。

二、什么是电力系统的不正常运行状态和事故?

答:所谓不正常运行(异常)状态是指系统的正常工作受到干扰,使运行参数偏离正常值。如过负荷、电压异常、系统振动等。

发生不正常运行(异常)状态或故障若不及时处理或处理不当时,就可能引起事故。而事故就是指人员伤亡、设备损坏、对用户停电或少送电、电能质量降低到不能容许的程度。

电线电缆的常见故障有哪些?

上海宝宇电线电缆制造有限公司
  电线电缆线路常见的故障有机械损伤、绝缘损伤、绝缘受潮、绝缘老化变质、过电压、电缆过热故障等。当线路发生上述故障时,应切断故障电缆的电源,寻找故障点,对故障进行检查及分析,然后进行修理和试验,该割除的割除,待故障消除后,方可恢复供电。
  电缆故障最直接的原因是绝缘降低而被击穿.主要有:
  a、超负荷运行.长期超负荷运行,将使电缆温度升高,绝缘老化,以致击穿绝缘,降低施工质量.
  b、电气方面有:电缆头施工工艺达不到要求,电缆头密封性差,潮气侵入电缆内部,电缆绝缘性能下降;敷设电缆时未能采取保护措施,保护层遭破坏,绝缘降低.
  c、土建方面有:工井管沟排水不畅,电缆长期被水浸泡,损害绝缘强度;工井太小,电缆弯曲半径不够,长期受挤压外力破坏.主要是市政施工中机械野蛮施工,挖伤挖断电缆.
  d、腐蚀.保护层长期遭受化学腐蚀或电缆腐蚀,致使保护层失效,绝缘降低.
  e、电缆本身或是电缆头附件质量差,电缆头密封性差,绝缘胶溶解,开裂,导致站出现的谐振现象为线路断线故障使线路相间电容及对地电容与配电变压器励磁电感构成谐振回路,从而激发铁磁谐振.
  断线故障引起谐振的危害
  断线谐振在严重情况下,高频与基频谐振叠加,能使过压幅值达到相电压[P]的2.5倍,可能导致系统中性点位移,绕组及导线出现过压,严重时可使绝缘闪络,避雷器**,电气设备损坏.在某些情况下,负载变压器相序可能反转,还可能将过电压传递到变压器的低压侧,造成危害.
  防止断线谐振过压的措施
  防止断线谐振过压的主要措施有:
  (1)不采用熔断器,避免非全相运行.
  (2)加强线路的巡视和检修,预防断线的发生.
  (3)不将空载变压器长期挂在线路上.
  (4)采用环网或双电源供电.
  (5)在配变侧附加相间电容,
  其原理是:采用电容作为吸能元件来吸收暂态过程中的能量,从而降低冲击扰动强度以抑制谐振的发生.s一(o+ 3C,,) 1C.,在配变侧附加相间电容△C,使8一[Co+ 3(C U+ A0)/Ca增大,从而增大等值电容C和等值电动势Eo所需电容值可根据文献中方法求出.

工业中有哪些常见的电能质量问题?

工业上主要的电能质量问题有四类:
  一.谐波电压和谐波电流:谐波电压和电流表现为电压、电流波形不再是标准的正弦波,而是发生了畸变。谐波电压是导致工业自动化设备误动作的主要原因之一,谐波电流是导致变压器过热、电缆过热,无功补偿柜故障、跳闸等故障现象的主要原因。

  二.浪涌电压:浪涌电压(又称为瞬态电压)是一种随机出现,持续时间很短(数十μs),幅度很高的电压。浪涌电压的危害是损坏设备硬件,缩短设备寿命,造成数据丢失,导致自动控制设备误动作。

  三.电压骤降:电压骤降指电压有效值的幅度短时间(60个周期以下)的降低,降低的幅度会达到90%。电压骤降是导致自动控制设备误动作的主要原因之一。

  四.射频干扰:射频干扰是指频率在100kHZ以上的电压和电流,或者电磁场。射频干扰是导致仪表精度下降、视频信号质量下降、自动控制设备误动作的主要原因之一。

电动机的常见故障有哪两种?

同步电动机励磁系统常见故障分析
本文结合KGLF11型励磁装置,对其在运行中的常见故障进行分析。
1常见故障分析
(1)开机时调节6W,励磁电流电压无输出。
原因分析:励磁电流电压无输出,肯定是晶闸管无触发脉冲信号,而六组脉冲电路同时无触发脉冲很可能是移相插件接触**,或者同步电源变压器4T损坏,造成没有移相给定电压加到六组脉冲电路的1V1基极回路上,从而六组脉冲电路无脉冲输出导致晶闸管不导通。

(2)励磁电压高而励磁电流偏低。

原因分析:这是个别触发脉冲消失或是个别晶闸管损坏的缘故。个别触发脉冲消失可能是脉冲插件接触**。另外图1中三极管1V1、单极晶体管2VU及小晶闸管9VT损坏,或者是电容2C严重漏电或开路。如果主回路中晶闸管1VT~6VT中有某一个开路或是触发极失灵,同样会导致输出励磁电流偏低的现象。

(3)合励磁电路主开关时,励磁电流即有输出。

原因分析:这是由于图1所示脉冲电路中的三极管1V1集电极-发射极之间漏电,即使移相电路还未送来正确的控制电压,也会导致1C充电到2VU导通的程度。2VU即输出触发使小晶闸管9VT导通,2C经9VT放电而发出脉冲令1VT、3VT、6VT之一触发导通,使转子励磁 电路中流过直流电流。

(4)同步电动机起动时,励磁不能自行投入。

原因分析:励磁不能自行投入。肯定是自动投励通道电路中断或工作不正常,因此可能是投励插件与插座间接触**,或是图2所示投励电路中的三极管3V1、单结晶体管4VU工作不正常,电容5C漏电、电位器W′损坏。另外是移相插件同样有接触**现象,或者是图3所示移相电路的小晶闸管10VT损坏等等。

(5)运行过程中励磁电流电压上下波动。

原因分析:引起励磁电流电压输出不稳的原因很多,主要有1)脉冲插件可能存在接触**,造成个别触发脉冲时有时无。2)图1所示脉冲电路的电位器4W松动,使三极管1V1电流负反馈发生变化,造成放大器工作点不稳定,从而影响晶闸管主回路输出的稳定性。另外,如果电容2C漏电或单结晶体管2VU及三极管1V1性能**,也会引起触发脉冲相位移动。3)图3所示移相电路的电位器6W松动或接触**,将会使移相控制电压Ed间歇性消失,引起励磁电流电压输出大幅度波动。另外,如果稳压管7VS、8VS损坏,都会使Ey随电网电压波动而波动,使Ed输出波动,造成晶闸管主回路直流输出不稳。

(6)励磁装置输出电压调不到零位。

原因分析:图3所示移相电路中电阻18R虚焊,阻值增大或减少,会引起Ed-Ec≠0,使励磁输出电压无法调到零位。

总之,同步电动机晶闸管励磁装置的故障虽然多种多样,但大致可分为励磁不稳、励磁大幅度下降甚至失电压。这些故障大部分是由于插件引起的。

2日常维修中注意事项

(1)由于励磁装置采用强迫风冷,电柜内灰尘必须经常清除,以防止灰尘积附过多造成短路。清扫灰尘一般采用吸尘或吹拭的方法,而对吹不掉的附着物可用干净的油刷扫去,但切勿碰坏元件、线路或使元件互碰。清尘工作一般由上而下进行。

(2)插件松动会严重影响励磁装置的正常工作,处理方法是:一般可在励磁装置通电预试时用手轻敲插件拉手,一旦插件有松动,必然会引起输出上下波动。如果是元件虚焊引起的松动,当然要加焊牢固。而对于插件插座引起的松动,我们可以在插件的插入部分铜箔上拉一层薄锡,这样既可防止铜箔**,又可增加插件与插座接触的紧固程度。

(3)对于元件损坏的更换,新元件原则上要符合原设计的元件参数要求。但对于某些元件, 如电容元件,可用电容容量相同而耐压高一些的电容更换,又如稳压二极管,亦可用功率稍大而稳压值相同的稳压二极管更换。这样可降低元件的损坏频率,减少故障的出现。

(4)对于难以判断的故障,我们采用示波器来检查各脉冲波形与直流输出情况。这样可较为准确地检查出故障部位。另外,我们还可以采用同规格插件替换验证的检查方法进行检修。