今天冷知识百科网小编 冷以翔 给各位分享敛散性的判别方法的知识,其中也会对正项级数敛散性的判别方法?(正项级数敛散性的判别方法有哪些)相关问题进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!

正项级数敛散性的判别方法?

先判断这是正项级数还是交错级数  一、判定正项级数的敛散性  1.先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步).若不趋于零,则级数发散;若趋于零,则  2.再看级数是否为几何级数或p级数,因为这两种级数的敛散性是已知的,如果不是几何级数或p级数,则  3.用比值判别法或根值判别法进行判别,如果两判别法均失效,则  4.再用比较判别法或其极限形式进行判别,用比较判别法判别,一般应根据通项特点猜测其敛散性,然后再找出作为比较的级数,常用来作为比较的级数主要有几何级数和p级数等.  二、判定交错级数的敛散性  1.利用莱布尼茨判别法进行分析判定.  2.利用绝对级数与原级数之间的关系进行判定.  3.一般情况下,若级数发散,级数未必发散;但是如果用比值法或根值法判别出绝对级数发散,则级数必发散.  4.有时可把级数通项拆分成两个,利用“收敛+发散=发散”“收敛+收敛=收敛”判定.  三、求幂级数的收敛半径、收敛区间和收敛域  1.若级数幂次是按x的自然数顺序递增,则其收敛半径由或求出,进而可以写出收敛区间,再考虑区间端点处数项级数的敛散性可得幂级数的收敛域.  2.对于缺项幂级数或x的函数的幂级数,可根据比值判别法求收敛半径,也可作代换,换成t的幂级数,再求收敛半径.  四、求幂级数的和函数与数项级数的和  1.求幂级数的和函数主要先通过幂级数的代数运算、逐项微分、逐项积分等性质将其化为几何级数的形式,再求和.  2.求数项级数的和,可利用定义求出部分和,再求极限;或转化为幂级数的和函数在某点的函数值.  五、将函数展开为傅里叶级数  将函数展开为傅里叶级数时需根据已有公式求出傅里叶系数,这时可根据函数的奇偶性简化系数的计算,然后再根据收敛性定理写出函数与其傅里叶级数之间的关系.

判断级数收敛的八种方法?

正项级数敛散性的判别方法?

利用部分和数列判别法,比较原则,比式判别法,根式判别法,积分判别法,以及拉贝判别法等。        对于正项级数,比较判别法是一个相当有效的判别法,通过找一个新正项级数,比较通项,如果原级数的通项小,新级数收敛,则原级数收敛; 如果新级数发散,原级数通项大,则原级数发散,通常在判别过程中使用其极限形式。

如何判断用什么方法判别级数敛散性?

一般用来做参照的级数最常用的是等比级数和P级数,其实,用比较判别法基本上是用P级数作为参照级数,如果用来参照的级数是等比级数,那就不必用比较判别法,而应用比值判别法了。用比较判别法的技巧是:先判断级数一般项极限是否为零,不为零,则级数发散,若一般项极限为零,找与一般项同阶的无穷小,而且通常是P级数的一般项,从而由此P级数的敛散性确定原级数的敛散性。

级数的敛散性讲解?

一、判定正项级数的敛散性1.先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步)。若不趋于零,则级数发散;如果趋于零,则考虑其它方法。
2.再看级数是否为几何级数或p级数,因为这两种级数的敛散性是已知的,如果不是几何级数或p级数,
3.用比值判别法或根值判别法进行判别,
4.再用比较判别法或其极限形式进行判别,用比较判别法判别,一般应根据通项特点猜测其敛散性,然后再找出作为比较的级数,常用来作为比较的级数主要有几何级数和p级数等.
二、判定交错级数的敛散性1.利用莱布尼茨判别法进行分析判定.
2.利用绝对级数与原级数之间的关系进行判定.
3.一般情况下,若级数发散,级数未必发散;但是如果用比值法或根值法判别出绝对级数发散,则级数必发散.
4.有时可把级数通项拆分成两个,利用“收敛+发散=发散”“收敛+收敛=收敛”判定.
三、求幂级数的收敛半径、收敛区间和收敛域1.若级数幂次是按x的自然数顺序递增,则其收敛半径由或求出,进而可以写出收敛区间,再考虑区间端点处数项级数的敛散性可得幂级数的收敛域.
2.对于缺项幂级数或x的函数的幂级数,可根据比值判别法求收敛半径,也可作代换,换成t的幂级数,再求收敛半径.
四、求幂级数的和函数与数项级数的和1.求幂级数的和函数主要先通过幂级数的代数运算、逐项微分、逐项积分等性质将其化为几何级数的形式,再求和.
2.求数项级数的和,可利用定义求出部分和,再求极限;或转化为幂级数的和函数在某点的函数值.
五、将函数展开为傅里叶级数将函数展开为傅里叶级数时需根据已有公式求出傅里叶系数,这时可根据函数的奇偶性简化系数的计算,然后再根据收敛性定理写出函数与其傅里叶级数之间的关系。

用比值法判断级数的敛散性的步骤?

比值判别法只适合于正项级数,因为正项级数部分和要么有界(收敛)要么**(发散)。如果交错级数一般项不趋向0,则级数发散。交错级数取绝对值(变成正项级数)如果收敛,则是绝对收敛。此外只有一种情况可以判断收敛:满足莱布尼茨法则即一般项的绝对值如果单调趋向0,则收敛。

等比级数的敛散性是什么

不定积分的敛散性?

No.1 直接计算法(或称定义法)即通过直接计算反常积分来判断敛散性。若反常积分能计算出一个具体数值,则收敛,否则发散。此种方法适合被积函数的原函数容易求得时的反常积分敛散性的判别。No.2 比较审敛法的极限形式比较判别法的普通形式较为简单,不多赘述,接下来给大家归纳一下比较判别法的极限形式。一般的,关于广义积分的敛散性,可以这样判断:1.如果可以通过积分求出具体值,那当然说明是收敛的;如果按照定积分一样的计算发现是趋于无穷,那当然说明是发散的;2.如果不好算出具体值,可以通过不等式进行放缩,