今天冷知识百科网小编 方觅萱 给各位分享合理确定零件的标准有哪些的知识,其中也会对工程材料的选用须遵循哪三个原则?(工程材料的选用须遵循哪三个原则和要求)相关问题进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!
工程材料的选用须遵循哪三个原则?
工程材料的选用须遵循稳定性、可扩展性、兼容性三个原则。
工程材料选用的最主要依据
1、材料的使用性能:在设计机械零件和选材时,应根据零件的工作条件,损坏形式,找出对材料机械性能的要求。
2、材料的工艺性能;材料的加工工艺性能主要有:铸造、压力加工、切削加工、热处理和焊接等性能。其加工工艺性能的好坏直影响到零件的质量、生产效率及成本。
3、材料的经济性能:每台机器产品成本的高低是劳动生产率和重要标志。
扩展资料
建设一项工程预期支付或实际支付的全部固定资产投资费用即为工程造价。这些费用主要包括设备及工器具购置费、建筑工程及安装工程费、工程建设其他费用、预备费、建设期利息、固定资产投资方向调节税(这项费用目前暂停征收)。
尽管这些费用在建设项目的竣工决算中,按照新的财务制度和企业会计准则核算新增资产价值时,并没有全部形成新增固定资产价值,但这些费用是完成固定资产建设所必需的。
因此,从这个意义上讲,工程造价就是建设项目固定资产投资。从承发包角度来定义,工程造价是指工程价格,即为建成一项工程,预计或实际在土地、设备、技术劳务以及承包等市场上,通过招投标等交易方式所形成的建筑安装工程的价格和建设工程总价格。
参考资料来源:百度百科-工程材料
机械零件检验标准是什么?
你要实际的 还是理论的,零件检验标准当然是零件的图纸咯,零件图纸关键部位有公差配合的,实际尺寸在范围内即合格;没有公差的,按照自由公差来,机械设计手册,公差配合有详细的介绍的了~!
你要实际的,我就给你讲这么检测,比如一个机械零件,你要检测就要拿着图纸检测,比如有几个是有公差的,你就要检测那些尺寸是否在公差内,在内的话就合格,这个是关键尺寸;接着检验没有公差的尺寸,比如是轴按照h12,h13来,当然你要求更低可以选h14,h15;孔的尺寸你按照H12,H13来,你们厂如果要求低的也可以H14,H15;长度尺寸的检测按照JS12,JS13。 这些是尺寸的检验。还有些形状公差,位置公差就麻烦点了。需要一些工装,靠模之类的,根据实际情况来检验~~
机械零件的材料都有哪些选择原则?
机械零件是指组成机器的不可拆分的基本单元,如螺栓、螺钉、键、带、齿轮、轴、弹簧、销等。机械零件分为通用零件和专用零件。通用零件是指能在各种机器中广泛使用的零件,专用零件是指只能在某一类特定的机器中使用的零件。一、机械零件常用材料机械零件的材料有金属材料、非金属材料和复合材料。金属材料分为黑色金属材料和有色金属材料。黑色金属材料包括各种钢、铸钢和铸铁,具有较好的力学性能(如强度、塑性、韧性等),价格相对便宜且容易获得,而且能满足多种性能和用途的要求。在各类黑色金属中,由于合金钢的性能优良,因而常常用来制造重要的零件。有色金属材料包括铜合金、铝合金、轴承合金等,具有密度小、导热和导电性能好等优点,通常还可用于有减摩、耐磨及耐腐蚀要求的场合。非金属材料指塑料、橡胶、合成纤维等高分子材料及陶瓷等。高分子材料有许多优点,如原料丰富、密度小,在适当的温度范围内有很好的弹性,耐腐蚀性好等。其主要缺点是容易老化,其中不少材料阻燃性差,总体上讲,耐热性不好。陶瓷材料的主要特点是硬度极高、耐磨、耐腐蚀、熔点高、刚度大以及密度比钢铁小等。目前,陶瓷材料已应用于密封件、滚动轴承和切削**等结构中。其主要缺点是比较脆,断裂韧度低,价格昂贵,加工工艺性差等。复合材料是指用两种或两种以上具有明显不同的物理和力学性能的材料经复合工艺处理而得到所需性能的一种新型材料。例如用玻璃、石墨(碳)、硼、塑料等非金属材料可以复合成各种纤维增强复合材料。在普通碳素钢板表面贴附塑料,可以获得强度高而又耐腐蚀的塑料复合钢板,主要优点是有较高的强度和弹性模量,而质量又特别小,但也有耐热性差、导热和导电性能较差的缺点。此外,复合材料的价格比较贵。所以目前复合材料主要用于航空、航天等高科技领域,在民用产品中,复合材料也有一些应用。二、机械零件材料选择原则从各种各样的材料中选择出适用的材料,是一项受多方面因素所制约的工作。在以后的有关章节中,将分别介绍各种零件适用的材料和牌号。下面就金属材料(主要是钢铁)的一般选用原则作一简介。选择机械零件材料的原则是:所需材料应满足零件的使用要求,有良好的工艺性和经济性等。1、使用要求机械零件的使用要求表现为以下几点:(1)零件的工作状况和受载情况,以及为避免相应的失效形式而提出的要求工作状况是指零件所处的环境特点、工作温度、摩擦和磨损的程度等。在湿热环境或腐蚀介质中工作的零件,其材料应有良好的缓蚀和耐腐蚀的能力,例如选用不锈钢、铜合金等。工作温度对材料选择的影响,一方面要考虑互相配合的两零件的材料的线胀系数不能相差过大,以免在温度变化时产生过大的热应力或者使配合松动;另一方面也要考虑材料的力学性能随温度而改变的情况。在滑动摩擦下工作的零件,要提高其表面硬度,以增强耐磨性,应选择适于进行表面处理的淬火钢、渗碳钢、氮化钢等品种或选用减摩和耐磨性能好的材料。受载情况是指载荷、应力的大小和性质。脆性材料原则上只适用于制造在静载荷下工作的零件;在多少有些冲击的情况下,应以塑性材料作为主要使用的材料;对于表面受较大接触应力的零件,应选择可以进行表面处理的材料,如表面硬化钢;对于受变应力的零件,应选择耐疲劳的材料;对于受冲击载荷的零件,应选择冲击韧度较高的材料;对于尺寸取决于强度,且尺寸和质量又受限的零件,应选择强度较高的材料;对于尺寸取决于刚度的零件,应选用弹性模量较大的材料。金属材料的性能一般可通过热处理加以提高和改善,因此,要充分利用热处理的手段来发挥材料的潜力。对于最常用的调质钢,由于其回火温度的不同,可得到力学性能不同的毛坯。回火温度越高,材料的硬度和强度将越低,而塑性越好。所以在选择材料的品种时。应同时规定其热处理规范,并在图样上加以注明。(2)对零件尺寸和质量的限制零件尺寸及质量的大小与材料的品种及毛坯制取方法有关。用铸造材料制造毛坯时,一般可以不受尺寸及质量大小的限制;而用锻造材料制造毛坯时,则需注意锻压机械及设备的生产能力。此外,零件尺寸和质量的大小还和材料的强重比有关,应尽可能选用强重比大的材料,以便减小零件的尺寸和质量。(3)零件在整机或部件中的重要程度。2、工艺要求要考虑所用的材料从毛坯到成品都能方便地制造出来。例如,结构复杂、尺寸较大的零件难以锻造,可以采用铸造或焊接,其材料必须具有良好的铸造性能或焊接性能。根据所选的工艺,要考虑材料对该工艺的加工可能性。对于铸造,要考虑材料的液态流动性、产生缩孔和偏析的可能性等;对于焊接,要考虑材料的焊接性和产生裂纹的倾向等;对于锻造,要考虑材料的延伸性、热脆性和变形能力等;对于需要热处理的零件,要考虑材料的淬透性、淬火变形的倾向性等;对于需经切削加工的零件,要考虑材料的硬度、易切削性、冷作硬化程度和切削后能达到的表面粗糙度等。3、经济要求(1)材料本身的相对价格在满足使用要求的前提下,应尽量选用价格低廉的材料。这一点对于大批量制造的零件尤其重要。(2)材料的加工费用当零件质量不大而加工量很大时,加工费用在零件总成本中要占很**例。尽管铸铁比钢板价廉,但对于某些单件或小批量生产的箱体类零件来说,采用铸铁反而比采用钢板焊接的成本更高,因为后者可以省掉模具的制造费用。(3)材料的利用率采用无屑或少切屑加工,如模锻、精铸、冲压等,可以提高材料的利用率。(4)局部品质原则在很多情况下,零件在其不同的部位上对材料有不同的要求。要想选用一种材料满足不同的要求,事实上是不可能的,即使可能,价格也非常昂贵。这时,可根据局部品质原则,在不同的部位上采用不同的材料或采用不同的热处理工艺,使各局部的要求分别得到满足。例如蜗轮的轮齿必须具有优良的耐磨性和较高的抗胶合能力,其他部分只需具有一般的强度即可,故在铸铁轮芯外套用青铜齿圈,以满足这些要求。又如滑动轴承只在其和轴颈接触的表面处要求有减摩性,所以只需用减摩材料制成轴瓦,而不必把整个轴承都用减摩材料制造。局部品质也可以用渗碳、表面淬火、表面喷镀、表面辗压等方法获得。(5)材料代用以节约贵重、稀有材料由于供应上的原因或经济性的要求,可以对所选材料用其他材料代用。例如,当强度为主要要求时,可选用强度较高而价格较贵的材料,也可用强度较差而价廉的材料代替,而将结构尺寸适当加大;当耐磨或耐腐蚀为主要要求时,可以不选用耐磨性或防腐性好的材料而选用较差的材料进行各种表面硬化处理或防腐处理;对于稀有材料,也可以用普通材料代替,例如用铝青铜代替锡青铜制造轴瓦。(6)材料供应情况从简化材料品种的供应和储存出发,对于小批量生产的零件,应尽可能减少同一台机器上使用材料的品种和规格。
什么是机械零件的设计准则
1、强度准则
要求机械零件的工作应力σ不超过许用应力[σ]。其典型的计算公式是:
(3-16)
σlim——极限应力,对受静应力的脆性材料取其强度极限,对受静应力的塑性材料取其屈服极限,对受变应力的零取其疲劳极限。
S——安全系数。
2.刚度准则
机械零件在受载荷时要发生弹性变形,刚度是受外力作用的材料、机械零件或结构抵抗变形的能力。材料的刚度由使其产生单位变形所需的外力值来量度。机械零件的刚度取决于它的弹性模量E或切变模量G、几何形状和尺寸,以及外力的作用形式等。分析机械零件的刚度是机械设计中的一项重要工作。对于一些需要严格限制变形的零件(如机翼、机床主轴等),须通过刚度分析来控制变形。我们还需要通过控制零件的刚度以防止发生振动或失稳。另外,如弹簧,须通过控制其刚度为某一合理值以确保其特定功能。刚度准则是要求零件受载荷后的弹性变形量不大于允许弹性变形量。刚度准则的表达式为
(3–17)
y是弹性变形量,如挠度、纵向伸长(缩短):[y]为相应的许用弹性变形量。零件的弹性变形量可由理论计算或经实验得到,许用变形量则取决于零件的用途,根据理论分析或经验确定。
3.耐热性准则
由于摩擦等原因,机械在运转时,机械零件和润滑剂的温度一般会升高。过高的工作温度将导致润滑效果下降,同时,还会引起零件的热变形、硬度和强度下降,甚至损坏。如在高温时,金属机械零件可能发生胶合、卡死;塑料等非金属机械零件可能发生软化,甚至熔化等,在某些场合还会引起热应力。耐热性准则一般是控制机械零件的工作温度不要超过许用值,以保证零部件正常工作,其表达式是
(3–18)
为了改善散热性能、控制温升,必要时可以采用水冷或气冷等措施。
4. 振动稳定性准则
当激励的频率等于物体固有频率时,物体振幅最大,激励的频率与固有频率相差越大,物体的振幅越小。激励的频率接近物体的固有频率时,受迫振动的振幅会很大,这种现象叫做共振。振动稳定性指机械零件在机器运转时避免发生共振的品质。
为了延长机器的寿命,为了避免轴和机器的损坏,应验算轴的振动稳定性,特别是高速机器的轴。振动稳定性准则要求机械零件的固有频率应与激励的频率错开,保证不发生共振。
设机器中受激励作用的零部件的固有频率为f,激励力的频率为fp,一般要求
fp 1.15 f (3–19)
改变机械零件的刚度和质量可以改变其固有频率。增大机械零件的刚度和减小其质量,提高其固有频率;减小机械零件的刚度和增大其质量则降低机械零件的固有频率。有时,机器运转时为了防止共振要调节转速。
轴产生共振的主要原因是:由于材料内部质量不均匀,加之制造和安装的误差,使其质心和它的旋转中心产生偏差,轴旋转时产生惯性力,这个惯性力使转子作强迫振动。轴在引起共振时的速度称为临界速度。在临界速度下,这个惯性力的频率等于或几倍于转子的固有频率,因此发生共振。
5.寿命准则
为了保证机器在一定寿命期限内正常工作,在设计机械零件时必然要对机械零件的寿命提出要求。需要说明,在机器寿命期限内,零件是可以更换的,也就是说某些机械零件的寿命可以比机器的寿命短。机械零件的寿命主要受材料的疲劳、磨损和腐蚀影响。
为了避免发生零件疲劳引起的失效,如疲劳断裂,应根据机械零件寿命对应的疲劳极限计算疲劳强度。即根据寿命要求,结合零件转速等具体情况,根据式(3-6),计算出应力循环次数为N时的疲劳极限,再代入强度条件式,计算疲劳强度。当满足疲劳强度时,可以保证机械零件在破坏前的应力循环次数达到寿命要求。
磨损一般是不可避免的。在一定条件下,腐蚀也是不可避免的,如桥梁结构件、地埋钢质管道的腐蚀等。在设计时,主要是保证机械零件在寿命内,不要发生过度的磨损和腐蚀。磨损发生的机理尚为完全被人们掌握,影响磨损的因素也比较多,一般根据摩擦学设计原理来改善摩擦副的耐磨性。主要措施有:合理选择摩擦副材料;合理选择润滑剂和添加剂;控制摩擦副的工作条件,如压强、滑动速度和温升。
到目前为止,还没有实用、有效的腐蚀寿命计算方法,通常从材料选择及防腐处理方面采取措施。如选用耐腐蚀的材料,采用表面镀层、喷涂、磷化等处理。
6. 可靠性准则
可靠性是产品在规定的条件下和规定的时间内,完成规定功能的能力。产品的质量一般应包含性能指标和可靠性指标。机械产品的性能指标是指产品具有的技术指标,如机械的功率、转矩、工作力、工作速度等。如果只有性能指标,没有可靠性指标,产品的性能指标也得不到保证。例如,一台技术先进的飞机,如果可靠性不高,势必经常发生故障,影响正常飞行和增加维修费用,甚至可能造成严重的事故。产品的可靠性用可靠度R(t)来衡量。可靠度的定义是:产品在规定的条件下和规定的时间内完成规定功能的概率。可靠度是时间的函数。有一批数量为n的相同产品,在t=0开始工作,随着时间的延续,失效的件数no(t)在加大,正常工作的件数ni(t)在减少,在任意时刻t产品可靠度为
(3–20)
若某产品工作至3000小时的可靠度R(t)=0.96,则表示有96%的产品可以正常工作到3000小时以上,对具体一件产品来讲,其工作到3000小时的概率为96%。
失效率 指产品工作到t时刻,在下阶段 的单位时间内发生失效的概率,可以证明,其数学表达式为
(3–21)
分离变量,两边积分,得
得
(3–22)
零部件的失效率和时间的关系一般如图3-13所示。可以用试验的方法求得失效率曲线。失效率曲线反映产品总体寿命期失效率的情况。从失效曲线可以看出,失效大体可以分为三个阶段。
图3-15
第Ⅰ阶段为早期失效阶段,曲线为递减型。产品投入使用的早期,失效率较高而下降很快。其原因主要是设计、制造、贮存、运输等形成的**,以及调试、跑合、起动不当等人为因素所造成的。当这些由于先天**引起的失效发生后,设备运转逐渐正常,则失效率就趋于稳定。应该尽量设法避免零件的早期失效,降低失效率和早期失效阶段的时间t0。
第Ⅱ阶段为偶然失效阶段,其失效率缓慢增长。失效主要由非预期的过载、误操作、意外的天灾等偶然因素所造成。由于失效原因多属偶然,故称为偶然失效阶段。降低偶然失效期的失效率则能提高有效寿命,所以应注意提高产品的质量,精心使用维护。
第Ⅲ阶段为损坏失效阶段,其失效率是递增型。在t1以后失效率明显上升。这是由于产品已经老化,疲劳、磨损、蠕变、腐蚀等所谓有耗损的原因所引起的,故称为耗损失效期。针对这一阶段失效的原因,应该注意检查、监控等,提前维修,使失效率仍不上升。
7. 精度准则
对于高精度的机械零件、机构或设备,要求其运动误差小于许用值。例如在精密机械中,导轨的直线性误差、主轴的径向跳动误差、齿轮传动的转角误差等,必须要有一定的精度要求。可以根据机器和零件的功能要求,选用合适的公差与配合,即进行精度设计,并能正确地标注到图样上。还可以按照零件图给定的公差值,求出机构的误差,与要求的机构精度比较。
这里还有一篇更全的文章,就是太多了给你个网址
http://wenku.baidu.com/view/e22319649b6648d7c1c746f6.html
如果判定加工的零件尺寸合格或不合格?
要求8.6,上差0,下差-0.1,那么尺寸范围就是8.6-8.5之间,所有非此范围的均不合格!
要求5,上差+0.1,下差0,那么尺寸范围是5.0-5.1之间,其余均不合格
所以你上面的2个测量数据均不合格!
8.6和5MM 都是基本尺寸,上差代表该产品可以在基础尺寸上加多少,下差则是减多少!
当然,也有尺寸为2个公差都为正或者都为负的,例如10MM上差+0.3,下差+0.1的,这样就代表该产品尺寸允许在10.3-10.1MM之内~~~
建议兄弟你去新华书店买本公差配合的书看看,基础版本的就好,对你肯定有帮助!
机械零件设计的基本要求都有哪些内容?
机械零件设计是从机器的工作原理、承载能力、构造和维护等方面研究通用机械零件的设计问题,其中包括如何合理确定零件的形状和尺寸、如何合理选择零件的材料以及如何使零件具有良好的工艺性等。机械零件设计的基本要求:零件是组成机器的基本单元,要使所设计的机器满足基本使用要求,就必须使组成机器的零件满足以下要求。1、避免在预定寿命期内失效的要求在预定寿命期内不失效的要求包括三方面:强度、刚度、寿命。(1)强度零件在工作中发生断裂、磨损或不允许的变形统属强度不足。上述失效形式,除了用于安全装置中预定适时破坏的零件外,对任何零件都是应当避免的。因此保证零件有足够的强度,是机器正常工作的一个基本要求。为了提高机械零件的强度,在设计时原则上可以采用以下的措施:采用强度高的材料;使零件具有足够的截面尺寸;合理地设计零件的截面形状,以增大截面的惯性矩;采用热处理和化学热处理方法,以提高材料的力学性能;提高运动零件的制造精度,以降低工作时的动载荷;合理地配置机器中各零件的相互位置,以降低作用于零件上的载荷等。(2)刚度零件在工作时所产生的弹性变形不超过允许的限度,就叫做满足了刚度要求。对于弹性变形过大就要影响机器工作性能的零件,设计时除了要作强度计算外,还必须作刚度计算。为了提高零件的整体刚度,可采取如下措施:增大零件截面尺寸或增大截面的惯性矩;缩短支承跨距或采用多支点结构,以减小挠曲变形等。(3)寿命有的零件在工作初期虽然能够满足各种要求,但在工作一定时间后,却可能由于某些原因而失效。这个零件正常工作延续的时间就叫零件的寿命。零件寿命是决定机器寿命的基础,零件的破坏会导致机器无**常工作。影响零件寿命的主要原因有:材料的疲劳,材料的腐蚀以及相对运动零件接触表面的磨损。2、结构工艺性要求零件具有良好的结构工艺性,是指在既定的生产条件下,能够方便而经济地生产出来,并便于装配。所以零件的结构工艺性应从毛坯制造、机械加工过程及装配等几个生产环节加以综合考虑。工艺性还和批量大小及具体的生产条件相关。为了改善零件的工艺性,就应当熟悉当前的生产水平及条件。对零件的结构工艺性具有决定性影响的零件结构设计,在整个设计工作中占有很大的比重,因而必须予以足够的重视。3、经济性要求零件的经济性首先表现在零件本身的生产成本上。零件的经济性决定了机器的经济性,设计零件时,应力求设计出耗费(包括钱财、制造时间及人工)最少的零件。要降低零件的成本,首先要采用轻型的零件结构,以降低材料消耗,并且采用廉价而供应充足的材料以代替贵重材料,可以降低材料费用;采用少余量或无余量的毛坯或简化零件结构,以减少加工工时;工艺性良好的结构就意味着加工及装配费用低,所以工艺性对经济性有着直接的影响,对于大型零件采用组合结构以代替整体结构,这些对降低零件成本均有显著的作用。另外,尽可能采用标准化的零、部件,就可在经济性方面取得很大的效益。4、质量小的要求对绝大多数零件来说,都应当力求减小其质量。减小质量有两方面的好处:一方面可以节约材料,节约材料就意味着节省成本;另一方面,对于运动零件来说,可以减小惯性,改善机器的动力性能。可采取以下措施减小零件的质量:采用缓冲装置来降低零件上所受的冲击载荷;使用安全装置来限制作用在主要零件上的最大载荷;适当减少零件上应力较小处材料,以改善零件受力的均匀性,从而提高材料的利用率;施加与工作载荷相反方向的预载荷,以降低零件上的工作载荷,采用轻型薄壁的冲压件或焊接件来代替铸、锻零件,以及采用强重比高的材料等。5、可靠性要求机器的可靠性是由零件的可靠性保证的,零件可靠度是指在规定的使用时间内和预定的环境条件下,零件能够正常地完成其功能的概率。对于绝大多数机械来说,失效的发生都是随机性的。因此,为了提高零件的可靠性,就应当在工作条件和零件的性能两个方面使其随机变化尽可能地小。此外,在使用中加强维护和对工作条件进行监测,也可以提高零件的可靠性。
设计机械零件的基本要求是什么
设计的机械零件既要在预定的期间内工作可靠,又要成本低廉。满足工作可靠要求,就应在设计时使零件在强度、刚度、寿命、振动稳定性等方面满足一定条件,这些条件是判断机械零件工作能力的准则。要使成本低廉,就必须从设计和制造两方面着手,设计时应正确选择零件的材料、合理的尺寸和符合工艺要求的结构,并合理规定制造时的公差等级和技术条件等。
设计机械零件时,也往往需拟出几种方案,认真比较后选用最佳方案。
机械制图尺寸怎么标注
红色部分所标的尺寸确实是指肋板的厚度。因为红色部分的剖面线部分表示的是肋板的重合剖面,也就是表示的是肋板的断面形状,而这个尺寸的尺寸界线正好在厚度的轮廓的延长线上,所以该尺寸正好表示的是肋板断面的厚度。
机加工零件有哪些检验标准
1、基本原则:此验收方法仅接受指定尺寸的验收工作。 对于具有匹配要求的工件,尺寸检查需要符合泰勒原理,并且孔或轴的工作尺寸不允许超过实际尺寸。
2、最小变形原理:为了保证测量结果的可靠性和准确性,我们应尽量避免各种因素的影响,使变形规划最小化。
3、最短尺寸链原理:为了保证一定的测量精度,测量链应尽可能短。
4、闭合原理:当进行测量时,如果满足闭合条件,则间隔偏差之和为零,这就是所谓的闭合原理。基本同意原则:车辆基准应与设计基准和过程基准一致。
扩展资料原始资料:
(1)产品装配图,零件图。
(2)产品验收质量标准。
(3)产品的年生产纲领。
(5)制造厂的生产条件,包括机床设备和工艺设备的规格、性能和现有的状态、工人的技术水平、工厂自制工艺装备的能力以及工厂供电、供气的能力等有关资料。
(6)工艺规程设计、工艺装备设计所需要的设计手册和有关标准。
(7)国内外先进制造技术资料等。
参考资料来源:百度百科-机加工
车床加工选择标准都有哪些内容?
车床加工是机械加工的一部分,主要有两种加工形式:一种是把车刀固定,加工旋转中未成形的工件;另一种是将工件固定,通过工件的高速旋转,车刀(刀架)的横向和纵向移动进行精度加工。数控车床加工通常由控制系统、伺服系统、检测系统、机械传动系统及其他辅助系统组成。车削加工就是在车床上,利用工件的旋转运动和**的直线运动或曲线运动来改变毛坯的形状和尺寸,把加工成符合图纸的要求。车削加工是在车床上利用工件相对于**旋转对工件进行切削加工的方法。车削加工的切削能主要由工件而不是**提供。车削是最基本、最常见的切削加工方法,在生产中占有十分重要的地位。车削适于加工回转表面,大部分具有回转表面的工件都可以用车削方法加工,如内外圆柱面、内外圆锥面、端面、沟槽、螺纹和回转成形面等,所用**主要是车刀。在各类金属切削机床中,车床是应用最广泛的一类,约占机床总数的50%。车床既可用车刀对工件进行车削加工,又可用钻头、铰刀、丝锥和滚花刀进行钻孔、铰孔、攻螺纹和滚花等操作。按工艺特点、布局形式和结构特性等的不同,车床可以分为卧式车床、落地车床、立式车床、转塔车床以及仿形车床等,其中大部分为卧式车床。在车床使用不同的车刀或其他**,可以加工各种回转表面,如内外圆柱面、内外圆锥面、螺纹、沟槽、端面和成形面等,加工精度可达IT8一IT7,表面粗糙度Ra值为1.6~0.8,车削常用来加工单一轴线的零件,如直轴和一般盘、套类零件等。若改变工件的安装位置或将车床适当改装,还可以加工多轴线的零件(如曲轴、偏心轮等)或盘形凸轮。单件小批生产中,各种轴、盘、套等类零件多选用适应性广的卧式车床或数控车床进行加工;直径大而长度短(长径比0.3~0.8)的大型零件,多用立式车床加工。成批生产外形较复杂,具有内孔及螺纹的中小型轴、套类零件时,应选用转塔车床进行加工。大批、大量生产形状不太复杂的小型零件,如螺钉、螺母、管接头、轴套类等时,多选用半自动和自动车床进行加工。它的生产率很高但精度较低。