今天冷知识百科网小编 阮义柏 给各位分享建模标准制度包括哪些内容的知识,其中也会对BIM建模规范有什么?(bim建模相关规范)相关问题进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!

BIM建模规范有什么?

看书了解-《Autodesk Revit土建应用之入门篇》

3ds Max 2011中的基本建模包括哪三类?

BIM建模规范有什么?

这三种模式分别是:可编辑网格,可编辑多边形,曲面。这三种模式是3Dsmax建模的基本模式。本人用的比较多的是多边形。

数学建模需要掌握哪些知识?

软件方面主要掌握matlab,spss的相关操作,能写matlab程序。
数学方面的书主要还是了解一些比较重要的数学模型,知道模型的来龙去脉及其原理,以便自己也能学会利用,其他的数学基本的公式,某些要记的东西都可以不看。
最主要的还是要学会查找资料,有现学现用的能力。
祝你建模成功。

简述建立线性规划问题数学模型的主要步骤,并指出其中最关键的步骤是什么

简单的线性规划  (1)求线性目标函数的在约束条件下的最值问题的求解步骤是:  ①作图——画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l;  ②平移——将l平行移动,以确定最优解所对应的点的位置;  ③求值——解有关的方程组求出最优点的坐标,再代入目标函数,求出目标函数的最值

数学建模具体流程是什么?

数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。

我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。

数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。

数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。

应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习**、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathemathmatica,Matlab,Mapple,甚至排版软件等。

数学建模的几个过程

模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。

模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)

模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。

模型分析:对所得的结果进行数学上的分析。

模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

模型应用:应用方式因问题的性质和建模的目的而异。

全国大学生数学建模竞赛章程

(一九九七年十二月修订)

第一条 总则

全国大学生数学建模竞赛(以下简称竞赛)是国家教委高教司和中国工业与

应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励

学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际

问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养

创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。

第二条 竞赛内容

竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,

不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题

目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一

篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析

和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建

模的创造性、结果的正确性和文字表述的清晰程度为主要标准。

第三条 竞赛形式、规则和纪律

1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行。

2.竞赛一般在每年9月末的三天内举行。

3.大学生以队为单位参赛,每队3人,专业不限。研究生不得参加。每队可设一名指

导教师(或教师组),从事赛前辅导和参赛的组织工作,但在竞赛期间必须回避参

赛队员,不得进行指导或参与讨论,否则按违反纪律处理。

4.竞赛期间参赛队员可以使用各种图书资料、计算机和软件,在国际互联网上浏览,

但不得与队外任何人(包括在网上)讨论。

5.

工作人员将密封的赛题按时启封发给参赛队员,参赛队在规定时间内完成答卷,

并准时交卷。

6 .参赛院校应责成有关职能部门负责竞赛的组织和纪律监督工作,保证本校竞赛

的规范性和公正性。

第四条 组织形式

1.竞赛由全国竞赛组织委员会主持,负责每年发动报名、拟定赛题、组织全国优秀

答卷的复审和评奖、印制获奖证书、举办全国颁奖仪式等。全国竞赛组委会每届

任期四年,其组**员由国家教委高教司和中国工业与应用数学学会负责确定。

2.竞赛分赛区组织进行。原则上一个省(自治区、直辖市)为一个赛区,每个赛区

应至少有6所院校的20个队参加(每所院校至多10个队)。邻近的省可以合并成立

一个赛区。每个赛区建立组织委员会,负责本赛区的宣传发动及报名、监督竞赛纪

律和组织评阅答卷等工作。组委会成员由各省(自治区、直辖市)教委、工业与应

用数学学会的同志及有关人士组成(没有成立地方学会的,由各地教委与全国竞赛

组委会指定的院校协商确定),报全国竞赛组委会备案,并保持相对稳定。未成立

赛区的各省院校的参赛队可直接向全国竞赛组委会报名参赛。

3.设立组织工作优秀奖,表彰在竞赛组织工作中成绩优异或进步突出的赛区组委会,

以参赛(相对)校数和(绝对)队数、征题的数量和质量、无违纪现象、以及与

全国组委会的配合等为主要标准。

第五条 评奖办法

1.各赛区组委会聘请专家组成评阅委员会,评选本赛区的一等、二等奖(也可增设三等奖),

获奖比例一般不超过三分之一,其余凡完成合格答卷者获得成功参赛奖。

2.各赛区组委会按规定的比例将本赛区的优秀答卷送全国竞赛组委会。全国竞赛组委

会聘请专家组成全国评委会,按统一标准从各赛区送交的优秀答卷中评选出全国一等、

二等奖,获奖比例为全国参赛队数的百分之十左右。

3.全国与各赛区的一、二等奖均颁发获奖证书。竞赛成绩记入学生档案,对成绩优秀的参

赛学生,各院校在评优秀生、奖学金及报考(或免试直升)研究生时应予以适当考虑。

对指导教师的辛勤努力应予以表彰。

4.参赛队的指导教师一律不得参加本赛区及全国的评阅和决定获奖名次的工作。

5.对违反竞赛规则的参赛队,一经发现,取消参赛资格,成绩无效。对所在院校要予以

警告、通报,直至取消该校下一年度参赛资格。对违反评阅答卷和评奖工作规定的赛区,

全国竞赛组委会不承认其评奖结果。

6.设立异议期制度,具体内容见《全国大学生数学建模竞赛异议期制度的若干规定》。

第六条 经费

1.参赛队向各赛区组委会交纳报名费。

2.赛区组委会向全国组委会交纳一定数额的经费。

3.各级教育管理部门的资助。

4.社会各界的资助。满意还望采纳

如何在中学数学教学中渗透数学建模思想

中学数学教学中数学建模思想的渗透
/郑来兵
[导读]新课程标准明确提出中学数学要讲背景、讲应用。
一、数学建模与数学建模意识
在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的。其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现。也就是说,你要对复杂的实际问题进行分析,发现其中可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型,建立数学模型的这个过程就称为数学建模。著名数学家怀特海曾说:“数学就是对于模式的研究”。所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构。数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型。 举个简单的例子,二次函数就是一个数学模型,很多数学问题甚至实际问题(自由落体运动)都可以转化为二次函数来解决。而通过对问题数学化,模型构建,求解检验使问题获得解决的方法称之为数学模型方法。我们的数学教学说到底实际上就是教给学生前人给我们构建的一个个数学模型和怎样构建模型的思想方法,以使学生能运用数学模型解决数学问题和实际问题。由此,我们可以看到,培养学生运用数学建模解决实际问题的能力,关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断地引导学生用数学思维的观点去观察、分析和表示各种事物的关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。具体的讲,数学模型方法的操作程序大致上为:
??? 实际问题→分析抽象→建立模型→数学问题 ?????????↑????????????????????????↓ ???????检验 ← 实际解 ← 释译 ← 数学解
二、在数学建模活动中要充分重视学生的主体性
提高学生的主体意识是新课程改革的基本要求。在课堂教学中真正落实学生的主体地位,让学生真正成为数学课堂的主人,促进学生自主地发展,是现代数学课堂的重要标志,是高中数学素质教育的核心思想,也是全面实施素质教育的关键。中学数学建模活动旨在培养学生的探究能力和**解决问题的能力,学生是建模的主体,学生在进行建模活动过程中表现出的主体性表现为自主完成建模任务和在建模活动中的互相协作性。中学生具有好奇、好问、好动、好胜、好玩的心理特点,思维开始从经验型走向理论型,出现了思维的**性和批判性,表现为喜欢**思考、寻根究底和质疑争辩。因此,教师在课堂上应该让学生充分进行自主体验,在数学建模的实践中运用这些数学知识,感受和体验数学的应用价值。教师可作适当的点拨指导,但要重视学生的参与过程和主体意识,不能越俎代庖,目的是提高学生进行探究性学习的能力、提高学生学习数学的兴趣。 三、处理好数学建模的过程与结果的关系
我国的中学数学新课程改革已进入全面实施阶段。新的高中数学课程标准强调要拓宽学生的数学知识面,改善学生的学习方式,关注学生的学习情感和情绪体验,培养学生进行探究性学习的习惯和能力。数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是运用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题自主探究、学习的过程。新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。比如正方体截面切割的形状,用一个平面去截正方体,截面的形状是什么样的?
学习目标:通过想象和操作,探究正方体截面的形状。 问题串:
1.给出分类的原则(例如:按截面图形的边数分类)。按照你的分类原则,能得到多少种不同的截面?设计一种方案,找到截得这些形状截面的方法,并在正方体中画出示意图。
2.如果截面是三角形,你认为可以截出几种不同的三角形? 3.如果截面是四边形,你认为可以截出几种不同的四边形? 4.证明上面的结果。
5.截面多边形的边数最多有几条?请说明理由。
6.截面可能是正方形吗?可能有几种?画出示意图。 7.如果截面是三角形,其面积最大是多少?画出示意图。 8.你还能提出哪些相关的数学问题?
这个问题就可以根据不同的学生提出不同的要求,如:利用土豆、萝卜或橡皮泥通过切割实验进行研究;用透明材料制作一个中空的正方体,留出注水口,注入有色水,通过观察水面形状的方式进行实验研究;利用电脑或图形计算器。借助某些软件(如几何画板,Z+Z智能平台)进行模拟实验研究;空间想象;证明你的结论。
四、数学建模教学与素质教育 数学建模问题贴近实际生活,往往一个问题有很多种思路,有较强的趣味性、灵活性,能激发学生的学习兴趣,可以触发不同水平的学生在不同层次上的创造性,使他们有各自的收获和成功的体验。由于给了学生一个**创造的空间,就为学生提供了展示其创造才华的机会,从而促进学生素质能力的培养和提高,对中学素质教育起到积极推动作用。
1.构建建模意识,培养学生的转换能力
恩格斯曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。学生对问题的研究过程,无疑会激发其学习数学的主动性,且能开拓学生的创造性思维能力,养成善于发现问题、**思考的习惯。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识。
如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机,要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法提出新知识,激发学生的求知欲,但不可挫伤学生的积极性,失去“亮点”。
这样通过章前问题教学,学生明白了数学就是学习、研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据实际需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生的数学建模意识。 2.注重直觉思维,培养学生的想象能力
众所周知,数学史上不少的数学发现都来源于直觉思维,如笛卡尔坐标系、歌德**猜想等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。七年级的教材里,以游戏的方式编排了简单而有趣的概率知识,如转盘游戏,扔**来验证出现正面或反面的概率等等。通过有趣的游戏,激起了学生学习的兴趣,并了解到概率统计知识在社会中应用的广泛性和重要性。 3.灌输“构造”思想,培养学生的创新能力
“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。”我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识。 当然,数学建模在现在的中学数学教育中的地位和作用更加重要。但究竟如何在中学搞好数学建模活动,更好地发挥数学建模的作用,仍将是一个漫长而曲折的过程,是我们广大中学教师和教育工作者所思考和探索的问题。