今天冷知识百科网小编 熊丹炎 给各位分享电镜可以做什么用途的知识,其中也会对扫描电镜的用途(扫描电镜的用途和特点)相关问题进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!
扫描电镜的用途
1、材料微观放大成像,放大几倍~几十万倍。从毫米到纳米尺度!
2、材料微观区域化学成分分析
3、材料微观区域晶体结构分析。
其中1是基础用途,2、3是拓展用途
电子显微镜在医学中的应用
最常见医学上的应用为:
1、用电子电子显微镜描绘神经回路
2、电子显微镜观察DNA形态
3、扫描软骨细胞的电子电子显微镜图像
4、通过电子电子显微镜发现动物肾脏早期纤维化
5、可观察真核细胞的细胞器
光学显微镜与电子显微镜有什么区别
光学显微镜与电子显微镜是两种不同的显微镜,二者在定义上,分类上,组成结构上有区别。
1、定义不同
光学显微镜(英文Optical Microscope,简写OM)是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。
电子显微镜技术的应用是建立在光学显微镜的基础之上的,光学显微镜的分辨率为0.2μm,透射电子显微镜的分辨率为0.2nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。
2、分类不同
光学显微镜有多种分类方法,按使用目镜的数目可分为三目,双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微分干涉对比显微镜等。
电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。
3、组成结构不同
显微镜的光学系统主要包括物镜、目镜、反光镜和聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片和载玻片等。
电子显微镜由镜筒、真空装置和电源柜三部分组成。
扩展资料:
光学显微镜的原理:
显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。
参考资料来源:百度百科-光学显微镜
参考资料来源:百度百科-电子显微镜
显微镜是干什么用的?
显微镜有哪些功能
电子显微镜的用途?
扫描电镜的主要用途
大景深图像是扫描电镜观察的特色,例如:生物学,植物学,地质学,冶金学等等。观察可以是一个样品的表面,也可以是一个切开的面,或是一个断面。冶金学家已兴奋地直接看到原始的或磨损的表面。可以很方便地研究**物表面,晶体的生长或腐蚀的**。它一方面可更直接地检查纸,纺织品,自然的或制备过的木头的细微结构,生物学家可用它研究小的易碎样品的结构。例如:花粉颗粒,硅藻和昆虫。另一方面,它可以拍出与样品表面相应的立体感强的照片。 在扫描电镜应用中,很多集中在半导体器件和集成电路方面,它可以很详细地检查器件工作时局部表面电压变化的实际情况,这是因为这种变化会带来象的反差的变化。焊接开裂和腐蚀表面的细节或相互关系可以很容易地观察到。利用束感生电流,可以观测半导体P—N结内部**。 电子束与样品作用区内,还发射与样品物质其他性质有关信号。例如:与样品化学成分分布相关的,背散射电子,特征X射线,俄歇电子,*极荧光,样品吸收电流等;与样品晶体结构相关的,背散射电子衍射现象的探测;与半导体材料电学性能相关的,二次电子信号、电子束感生电流信号;在观察薄样品时产生的透射电子信号等。目前分别有商品化的探测器和装置可安装在扫描电镜样品分析室,用于探测和定性定量分析样品物质的相关信息。 扫描电镜对于固体材料的研究应用非常广泛,没有任何一种仪器能够和其相提并论。对于固体材料的全面特征的描述,扫描电镜是至关重要的。 具体功能用途归纳如下: 1、扫描电镜追求固体物质高分辨的形貌,形态图像(二次电子探测器SEI)-形貌分析(表面几何形态,形状,尺寸) 2、显示化学成分的空间变化,基于化学成分的相鉴定---化学成分像分布,微区化学成分分析. 1)用x射线能谱仪或波谱(EDSorWDS)采集特征x射线信号,生成与样品形貌相对应的,元素面分布图或者进行定点化学成分定性定量分析,相鉴定。 2)利用背散射电子BSE基于平均**序数(一般和相对密度相关)反差,生成化学成分相的分布图像; 3)利用*极荧光,基于某些痕量元素(如过渡金属元素,**元素等)受电子束激发的光强反差,生成的痕量元素分布图像。 4)利用样品电流,基于平均**序数反差,生成的化学成分相的分布图像,该图像与背散射电子图像亮暗相反。
扫描电镜的主要用途
大景深图像是扫描电镜观察的特色,例如:生物学,植物学,地质学,冶金学等等。观察可以是一个样品的表面,也可以是一个切开的面,或是一个断面。冶金学家已兴奋地直接看到原始的或磨损的表面。可以很方便地研究**物表面,晶体的生长或腐蚀的**。它一方面可更直接地检查纸,纺织品,自然的或制备过的木头的细微结构,生物学家可用它研究小的易碎样品的结构。例如:花粉颗粒,硅藻和昆虫。另一方面,它可以拍出与样品表面相应的立体感强的照片。 在扫描电镜应用中,很多集中在半导体器件和集成电路方面,它可以很详细地检查器件工作时局部表面电压变化的实际情况,这是因为这种变化会带来象的反差的变化。焊接开裂和腐蚀表面的细节或相互关系可以很容易地观察到。利用束感生电流,可以观测半导体P—N结内部**。 电子束与样品作用区内,还发射与样品物质其他性质有关信号。例如:与样品化学成分分布相关的,背散射电子,特征X射线,俄歇电子,*极荧光,样品吸收电流等;与样品晶体结构相关的,背散射电子衍射现象的探测;与半导体材料电学性能相关的,二次电子信号、电子束感生电流信号;在观察薄样品时产生的透射电子信号等。目前分别有商品化的探测器和装置可安装在扫描电镜样品分析室,用于探测和定性定量分析样品物质的相关信息。 扫描电镜对于固体材料的研究应用非常广泛,没有任何一种仪器能够和其相提并论。对于固体材料的全面特征的描述,扫描电镜是至关重要的。 具体功能用途归纳如下: 1、扫描电镜追求固体物质高分辨的形貌,形态图像(二次电子探测器SEI)-形貌分析(表面几何形态,形状,尺寸) 2、显示化学成分的空间变化,基于化学成分的相鉴定---化学成分像分布,微区化学成分分析. 1)用x射线能谱仪或波谱(EDSorWDS)采集特征x射线信号,生成与样品形貌相对应的,元素面分布图或者进行定点化学成分定性定量分析,相鉴定。 2)利用背散射电子BSE基于平均**序数(一般和相对密度相关)反差,生成化学成分相的分布图像; 3)利用*极荧光,基于某些痕量元素(如过渡金属元素,**元素等)受电子束激发的光强反差,生成的痕量元素分布图像。 4)利用样品电流,基于平均**序数反差,生成的化学成分相的分布图像,该图像与背散射电子图像亮暗相反。