今天冷知识百科网小编 梁寒双 给各位分享运筹学作用有哪些的知识,其中也会对运筹学学了有什么用?(运筹学学到了什么)相关问题进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!
运筹学学了有什么用?
在中国战国时期,曾经有过一次流传后世的**比赛,相信大家都知道,这就是田忌**。田忌**的故事说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。可见,筹划安排是十分重要的。
现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。
运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。
但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。
运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。
运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。
虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。
随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用。运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了。比如:数学规划(又包含线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、对策论、搜索论、模拟等等。
各分支简介
数学规划的研究对象是计划管理工作中有关安排和估值的问题,解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。它可以表示成求函数在满足约束条件下的极大极小值问题。
数学规划和古典的求极值的问题有本质上的不同,古典方法只能处理具有简单表达式,和简单约束条件的情况。而现代的数学规划中的问题目标函数和约束条件都很复杂,而且要求给出某种精确度的数字解答,因此算法的研究特别受到重视。
这里最简单的一种问题就是线性规划。如果约束条件和目标函数都是呈线性关系的就叫线性规划。要解决线性规划问题,从理论上讲都要解线性方程组,因此解线性方程组的方法,以及关于行列式、矩阵的知识,就是线性规划中非常必要的工具。
线性规划及其解法—单纯形法的出现,对运筹学的发展起了重大的推动作用。许多实际问题都可以化成线性规划来解决,而单纯形法有是一个行之有效的算法,加上计算机的出现,使一些大型复杂的实际问题的解决成为现实。
非线性规划是线性规划的进一步发展和继续。许多实际问题如设计问题、经济平衡问题都属于非线性规划的范畴。非线性规划扩大了数学规划的应用范围,同时也给数学工作者提出了许多基本理论问题,使数学中的如凸分析、数值分析等也得到了发展。还有一种规划问题和时间有关,叫做“动态规划”。近年来在工程控制、技术物理和通讯中的最佳控制问题中,已经成为经常使用的重要工具。
排队论是运筹学的又一个分支,它有叫做随机服务系统理论。它的研究目的是要回答如何改进服务机构或组织被服务的对象,使得某种指标达到最优的问题。比如一个港口应该有多少个码头,一个工厂应该有多少维修人员等。
排队论最初是在二十世纪初由丹麦工程师艾尔郎关于电话交换机的效率研究开始的,在第二次世界大战中为了对飞机场跑道的容纳量进行估算,它得到了进一步的发展,其相应的学科更新论、可靠性理论等也都发展起来。
因为排队现象是一个随机现象,因此在研究排队现象的时候,主要采用的是研究随机现象的概率论作为主要工具。此外,还有微分和微分方程。排队论把它所要研究的对象形象的描述为顾客来到服务台前要求接待。如果服务台以被其它顾客占用,那么就要排队。另一方面,服务台也时而空闲、时而忙碌。就需要通过数学方法求得顾客的等待时间、排队长度等的概率分布。
排队论在日常生活中的应用是相当广泛的,比如水库水量的调节、生产流水线的安排,铁路分成场的调度、电网的设计等等。
对策论也叫博弈论,前面讲的田忌**就是典型的博弈论问题。作为运筹学的一个分支,博弈论的发展也只有几十年的历史。系统地创建这门学科的数学家,现在一般公认为是美籍匈牙利数学家、计算机之父——冯·诺依曼。
最初用数学方法研究博弈论是在国际象棋中开始的——如何确定取胜的着法。由于是研究双方冲突、制胜对策的问题,所以这门学科在军事方面有着十分重要的应用。近年来,数学家还对水雷和舰艇、歼击机和轰炸机之间的作战、追踪等问题进行了研究,提出了追逃双方都能自主决策的数学理论。近年来,随着人工智能研究的进一步发展,对博弈论提出了更多新的要求。
搜索论是由于第二次世界大战中战争的需要而出现的运筹学分支。主要研究在资源和探测手段受到限制的情况下,如何设计寻找某种目标的最优方案,并加以实施的理论和方法。在第二次世界大战中,同盟国的空军和海军在研究如何针对轴心国的潜艇活动、舰队运输和兵力部署等进行甄别的过程中产生的。搜索论在实际应用中也取得了不少成效,例如二十世纪六十年代,美国寻找在大西洋失踪的核潜艇“打谷者号”和“蝎子号”,以及在地中海寻找丢失的**,都是依据搜索论获得成功的。
运筹学有广阔的应用领域,它已渗透到诸如服务、库存、搜索、人口、对抗、控制、时间表、资源分配、厂址定位、能源、设计、生产、可靠性、等各个方面。
运筹学是什么?
运筹学,是现代管理学的一门重要专业基础课。它是20世纪30年代初发展起来的一门新兴学科,其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。该学科应用于数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。 研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。而在应用方面,多与仓储、物流、算法等领域相关。因此运筹学与应用数学、工业工程、计算机科学、经济管理等专业相关运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,以达到最好的效果。运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型和制定解法。虽然不大可能存在能处理极其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。随着科学技术和生产力的发展,运筹学已渗入到很多领域,发挥着越来越重要的作用。运筹学本身也在不断发展,涵盖线性规划、非线性规划、整数规划、组合规划、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、博弈论、搜索论以及模拟等分支。运筹学有广阔的应用领域,它已渗透到诸如服务、搜索、人口、对抗、控制、时间表、资源分配、厂址定位、能源、设计、生产、可靠性等各个方面。运筹学是软科学中“硬度”较大的一门学科,是系统工程学和现代管理科学中的一种基础理论和不可缺少的方法、手段和工具。运筹学已被应用到各种管理工程中,在现代化建设中发挥着重要作用。
举例说明运筹学的原理和思想在物流系统中的应用?
运筹学作为一门新兴科学, 其应用范围是十分广泛的。对于不同类型问题, 运筹学都有着不同的解决方法,因而形成了许分支学科。它们虽然各有特性, 但在运用系统观念分析问题,并对问题建立模型求解这两点上都是共同的。以下主要介绍运筹学在经济管理和物流方面的应用。 一、运筹学在经济管理中的应用在经济管理中, 常用的运筹学方法有线性规划和动态规划。 1. 线性规划: 线性规划是目前在经济管理中应用最广泛的一种优化法, 它的理论已经十分成熟, 可以应用于生产计划、物资调用、资源优化配置等问题。它主要研究的是经济管理活动中经常遇到的两类问题: 一类是在有限的劳动力、设备、资金等资源条件下, 研究如何合理安排生产计划, 以取得最大的经济效益; 另一类是为了实现某一特定的目标( 生产指标或其它指标) , 研究如何组织生产, 或合理安排工艺流程, 或调整产品的成份等等,以使消耗的资料( 人力、设备台数、资金原材料等) 最少。这类统筹规划的问题用数学语言表达( 即数学模型) , 先根据问题要达到的目标选取适当的决策变量, 问题的目标通过用决策变量的函数形式来表示, 称之为目标函数,对问题的限制条件用有关变量的等式或不等式表达, 称为约束条件。当目标函数和约束条件均为线性时, 即为线性规划的数学模型。线性规划可通过单纯型法求出最优解, 现在已有专门的软件, 使用起来非常方便。 2. 动态规划: 动态规划是运筹学的一个分支, 是一种解决多阶段决策过程最优化的数学方法, 它把复杂的多阶段决策问题分解成一系列相互联系的较容易解决的单阶段决策问题,通过解决一系列单阶段决策问题来解决多阶段决策问题。以寻求最优决策序列的方法。动态规划研究多阶段决策过程的总体优化, 即从系统总体出发, 要求各阶段决策所构成的决策序列使目标函数值达到最优。在经济管理方面, 动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存问题、装载问题、排序问题、设备更新问题、生产过程最优控制问题等等, 所以它是现代经济管理中的一种重要的决策方法。 二、运筹学在物流方面的应用 在流通领域, 应该大力推广运用各种新型高效的交通运输工具, 实现公路、铁路、水运和空运等各种运输方式的合理配置及优化组合, 提高运输效率。运筹学在物流领域中的应用也相当普遍, 并且解决了许多实际问题,取得了很好的效果。主要的应用方面是: 1.物资存储: 存储论又称库存论,主要是研究物资库存策略, 即确定物资库存量、补货频率和一次补货量。合理的库存是生产和生活顺利进行的必要保障, 可以减少资金的占用, 减少费用支出和不必要的周转环节, 缩短物资流通周期, 加速再生产的过程等。在物流领域中的各节点: 工厂、港口、配送中心、物流中心、仓库、零售店等都或多或少地保有库存, 为了实现物流活动总成本最小或利益最大化, 可以运用存储理论的相关知识辅助决策。 2.并且在各种情况下都能灵活套用相应的模型求解, 如常见的库存控制模型分确定型存储模型和随机型存储模型, 其中确定型存储模型又可分为几种情况: 不允许缺货, 一次性补货; 不允许缺货, 连续补货; 允许缺货, 一次性补货; 允许缺货, 连续补货。随机型存储模型也可分为: 一次性订货的离散型随机型存储模型和一次性订货的连续型随机存储模型。常见的库存补货策略也可分为以下四种基本情况:连续检查, 固定订货量, 固定订货点的( Q, R) 策略; 连续检查固定订货点, 最大库存的( R, S) 策略; 周期性检查的( T, S) 策略以及综合库存的( T, R, S)策略。针对库存物资的特性, 选用相应的库存控制模型和补货策略, 制定一个包含合理存储量、合理存储时间、合理存储结构和合理存储网络的存储系统。